GUJARAT TECHNOLOGICAL UNIVERSITY BE - SEMESTER- III (OLD) EXAMINATION - SUMMER 2022 Subject Code:130001 Date:08-07-2022 Subject Name:Mathematics-III Time:02:30 PM TO 05:30 PM **Total Marks:70 Instructions:** 1. Attempt all questions. 2. Make suitable assumptions wherever necessary. 3. Figures to the right indicate full marks. 4. Simple and non-programmable scientific calculators are allowed. (i) Solve $y' + y \sin x = e^{\cos x}$ 03 0.1 **(a)** 04 (ii) Solve $(x^2 - x - y^2)dx - 2xydy = 0$ (ii) Solve V² Find the power series solution of the equation $\frac{d^2y}{dx^2} + xy = 0$ **(b)** 07 (a) (i) Solve $y'' + 9y = \cos 4x$ **O.2** (ii) Using the method of variation of parameter, solve $y'' - 3y' + 2y = e^x$ 03 04 Using the method of undetermined coefficient, solve $y'' = e^x \sin x$ 07 **(b)** (b) Solve the equation by series method 4xy'' + 2y + y = 007 (1) Show that $\int_{0}^{1} x^{2} (1-x)^{3} dx = \frac{1}{60}$. (2) Prove that $\frac{d}{dx} (x^{n} J_{n}(x)) = x^{n} J_{n-1(x)}$ 0.3 (a) 03 04` (b) Find the Forever series of $f(x) = x \sin x$ in the interval $(-\pi, \pi)$. Hence, deduce that $\frac{\pi - 1}{4} = 1 \cdot 3 - \frac{1}{3 \cdot 5} - \frac{1}{5 \cdot 7} - \dots$ 07 (a) Find the Find the Fourier series of $f(x) = x + x^2$ in the interval $(-\pi, \pi)$. Hence, deduce Q.3 07 that $\frac{\pi^2}{6} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots$ (b) Find the Half range Fourier cosine series of f(x) = x, $0 \le x \le \pi$. $f(x + 2\pi) = f(x)$ 07 **Q.4** (1) Find the Laplace transform of the function $f(t) = t \sin 2t$. 03 **(a)** (2) Find the inverse Laplace transform of the function $F(s) = \frac{4s + 12}{s^2 + 8s + 16}$. 04 Solve the differential equation using Laplace Transformation method **(b)** 07 $\frac{d^2 y}{dt^2} + y = t$, Given that y(0) = 1, y'(0) = 0, t > 0. (a) (1) Find the Laplace transform of the function $f(t) = e^{-2t}(t^2 + \sin 4t)$ 03 Q.4

Download all NOTES and PAPERS at StudentSuvidha.com

1

(2) Find the inverse Laplace transform of the function $F(s) = \tan^{-1} \frac{2}{s}$

Define Convolution theorem for Laplace transform. Using Convolution theorem to **(b)** find Laplace inverse of the function $F(s) = \frac{1}{s^2(s+1)^2}$ 07

Q.5	(a)	(1) Form the partial differential equation of $z = axy + b$. (2) Solve $p - a = \ln (x + y)$	03 04
	(b)	Solve by the method of separation of variables $\frac{\partial^2 u}{\partial r^2} = \frac{1}{2} \frac{\partial u}{\partial t}$	
		over $0 < x < 3$, $t > 0$. for the boundary conditions $u(0,t) = u(3,t) == 0$ and initial conditions $u(x,0) = 5 \sin 4\pi x$	07
Q.5	(a)	(1) Solve the partial differential equation $y = e^q$ (2) Solve $yp + xq + pq = 0$ Using Classical equation x^2	03 04 07

		CO.	
		; drio	
		ded from SUN	
		townload	
		5	

Download all NOTES and PAPERS at StudentSuvidha.com

04